50 Functional Equations for the Seasoned Contestant

Gabriel Goh*

September 2023

1 Introduction

Complaints against Functional Equations are not unusual, and comments such as "every FE is boring nowadays" or "very very extremely ridiculous standard FE" have emerged whenever a "classic" FE appears in a reputable contest. While it is unfortunately true that FEs require a lot more "bashing" and less "insight" then most other olympiad subtopics, every once in a while an FE materialises which challenges (or even shatters) this notion. I usually categorise these into two types:

- 1. FEs that look standard, yet have some surprising twist or some idea that requires way more intuition and creativity than the norm. Here one thinks of IMO'17/2 as the most well-known example.
- 2. FEs whose problem statement just challenge convention, and the best IMO example here would be IMO'22/2 (which, once you ignore the fact that it's a problem 2, is a pretty neat problem). Usually these problems entail the 'E' of 'FE' not being a strict *equation*, but more of a freestyle 'condition'.

These constitute my favourite types of FEs, and they are a refreshing break from the usual plugand-chug questions. Now that I have finished my contestant journey, I took some time to compile them. I have ordered them roughly by difficulty, according to my highly subjective opinions. Please note that this is definitely not meant to be a problem set for learning FEs - there are handouts for that ^{3,4}. I tried to include the source wherever possible, and a link if the source is sufficiently obscure. Most of the problems are very recent, both because FE proposals are getting quirkier and because these are the problems I grew up with. I also included several "classic" questions for completeness ⁵. Enjoy!

^{*}You can find me as gghx on both AoPS and discord

¹https://artofproblemsolving.com/community/c6h1954632p13509989

²https://artofproblemsolving.com/community/c6h1876068p12745214

 $^{^3 \}verb|https://artofproblemsolving.com/community/c6h411461p2308754|$

 $^{^4}$ https://artofproblemsolving.com/community/c6h1592427p9873821

⁵And I may have sneaked in a few of my originals :p

2 Problems

- 1. (EMC(J) 2014⁶) Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that
 - f(mn) = f(m)f(n) for all positive integers m, n.
 - There are infinitely many n such that $f(1), f(2), \dots, f(n)$ is a permutation of $1, 2, \dots, n$.
- 2. (IMOC 2023⁷) Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that for all positive integers n, there exists an unique positive integer k satisfying

$$f^k(n) \le n + k + 1.$$

3. (NICE MO 2021⁸) For each prime p, let $\mathbb{S}_p = \{1, 2, \dots, p-1\}$. Find all primes p for which there exists a function $f: \mathbb{S}_p \to \mathbb{S}_p$ such that

$$n \cdot f(n) \cdot f(f(n)) - 1$$
 is a multiple of p

- 4. (ELMO SL 2019⁹) Let $f: \mathbb{N} \to \mathbb{N}$. Show that $f(m) + n \mid f(n) + m$ for all positive integers $m \leq n$ if and only if $f(m) + n \mid f(n) + m$ for all positive integers $m \geq n$.
- 5. (FEOO SL 2020¹⁰) Let k be a fixed positive integer. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that for any distinct positive integers $a_1, a_2, ..., a_k$, there exist a permutation of its $b_1, b_2, ..., b_k$ such that,

$$\frac{f(a_1)}{b_1} + \frac{f(a_2)}{b_2} + \dots + \frac{f(a_k)}{b_k}$$

is a positive integer.

6. (Taiwan TST R1 2022) Find all $f: \mathbb{Z} \to \mathbb{Z}$ such that

$$f\left(\left|\frac{f(x)+f(y)}{2}\right|\right)+f(x)=f(f(y))+\left|\frac{f(x)+f(y)}{2}\right|$$

holds for all $x, y \in \mathbb{Z}$.

7. (Japan MO 2020) Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that

$$m^{2} + f(n)^{2} + (m - f(n))^{2} > f(m)^{2} + n^{2}$$

for all pairs of positive integers (m, n).

8. (IMO 2022) Let \mathbb{R}^+ denote the set of positive real numbers. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that for each $x \in \mathbb{R}^+$, there is exactly one $y \in \mathbb{R}^+$ satisfying

$$xf(y) + yf(x) \le 2$$

9. (Israel TST 2019) Find all functions $f: \mathbb{R} \to \mathbb{R}_{>0}$ such that for any reals x, y, y

$$f(f(x) - y^2) + f(2xy) = f(x^2 + y^2).$$

⁶https://artofproblemsolving.com/community/c6h2759347p24127944

⁷https://artofproblemsolving.com/community/c6h3152411p28637527

 $^{^8}$ https://artofproblemsolving.com/community/c1806461h2516372p21323591

⁹https://artofproblemsolving.com/community/c6h1864642p12623620

 $^{^{10} \}mathtt{https://artofproblemsolving.com/community/c6h2129239p15548089}$

- 10. (Japan MO 2023) Let m be a positive integer. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that for any $n \in \mathbb{N}$, there are exactly f(n) positive integers k satisfying $f(k) \leq f(n+1) + m$.
- 11. (InfinityDots MO 2018¹¹) Determine all bijections $f: \mathbb{Z} \to \mathbb{Z}$ satisfying

$$f^{f(m+n)}(mn) = f(m)f(n)$$

for all integers m, n.

- 12. (Taiwan TST 2022¹²) Let \mathcal{X} be the collection of all non-empty subsets (not necessarily finite) of the positive integer set \mathbb{N} . Determine all functions $f: \mathcal{X} \to \mathbb{R}^+$ satisfying the following properties:
 - (a) For all $S, T \in \mathcal{X}$ with $S \subseteq T$, there holds $f(T) \leq f(S)$.
 - (b) For all $S, T \in \mathcal{X}$, there hold

$$f(S) + f(T) \le f(S+T), \quad f(S)f(T) = f(S \cdot T),$$

where
$$S+T=\{s+t\mid s\in S, t\in T\}$$
 and $S\cdot T=\{s\cdot t\mid s\in S, t\in T\}.$

13. (MOMO 2020¹³) Suppose that there exist a nonempty set $X \subset \mathbb{R}$ and a function $f: X \to X$ satisfying

$$f(x) + y \in X$$
 if and only if $x \neq y$

for every $x, y \in X$. Prove that f(x) + x is constant while x varies on X.

14. (Japan MO 2009) Find all functions $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ such that for any non-negative reals x, y,

$$f(x^2) + f(y) = f(x^2 + y + xf(4y)).$$

15. (China TST 2018) Functions $f, g: \mathbb{Z} \to \mathbb{Z}$ satisfy

$$f(g(x) + y) = g(f(y) + x)$$

for any integers x, y. If the range of f is finite, prove that g is periodic.

16. (MEMO 2020) Let $\mathbb N$ be the set of positive integers. Determine all positive integers k for which there exist functions $f:\mathbb N\to\mathbb N$ and $g:\mathbb N\to\mathbb N$ such that g assumes infinitely many values and such that

$$f^{g(n)}(n) = f(n) + k$$

holds for every positive integer n.

17. (Canada MO 2021) A function f from the positive integers to the positive integers is called Canadian if it satisfies

$$\gcd(f(f(x)), f(x+y)) = \gcd(x, y)$$

for all pairs of positive integers x and y. Find all positive integers m such that f(m) = m for all Canadian functions f.

 $^{^{11} \}mathtt{https://artofproblemsolving.com/community/c6h1623904p10173500}$

 $^{^{12} \}mathtt{https://artofproblemsolving.com/community/c6h2835273p25098318}$

 $^{^{13}}$ https://artofproblemsolving.com/community/c6h1984152p13801379

- 18. (ISL 2017) Let S be a finite set, and let A be the set of all functions from S to S. Let f be an element of A, and let T = f(S) be the image of S under f. Suppose that $f \circ g \circ f \neq g \circ f \circ g$ for every g in A with $g \neq f$. Show that f(T) = T.
- 19. (SEIF 2022¹⁴) Let $2^{[n]}$ denote the set of subsets of $[n] := \{1, 2, \dots, n\}$. Find all functions $f: 2^{[n]} \to 2^{[n]}$ which satisfy

$$|A \cap f(B)| = |B \cap f(A)|$$

for all subsets A and B of [n].

20. (USEMO 2020^{15}) A function f from the set of positive real numbers to itself satisfies

$$f(x + f(y) + xy) = xf(y) + f(x + y)$$

for all positive real numbers x and y. Prove that f(x) = x for all positive real numbers x.

21. (AoPS user TLP.39¹⁶) Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that

$$\sum_{i=1}^{n^2} f(i) = n^2 f(n)$$

for all $n \in \mathbb{N}$.

22. (Singapore MO 2022) Find all functions $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ satisfying

$$m!! + n!! \mid f(m)!! + f(n)!!$$

for each $m, n \in \mathbb{Z}^+$, where n!! = (n!)! for all $n \in \mathbb{Z}^+$.

- 23. (Summer MO 2020¹⁷) Let p > 2 be a fixed prime number. Find all functions $f : \mathbb{Z} \to \mathbb{Z}_p$, where the \mathbb{Z}_p denotes the set $\{0, 1, \dots, p-1\}$, such that p divides f(f(n)) f(n+1) + 1 and f(n+p) = f(n) for all integers n.
- 24. (Brazil MO 2019) Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that for any positive reals x, y,

$$f(xy + f(x)) = f(f(x)f(y)) + x.$$

25. (Balkan MO 2022) Find all functions $f:(0,\infty)\to(0,\infty)$ such that

$$f(y(f(x))^3 + x) = x^3 f(y) + f(x)$$

for all x, y > 0.

26. (IMOC 2019¹⁸) Find all functions $f: \mathbb{N} \to \mathbb{N}$ so that

$$f^{2f(b)}(2a) = f(f(a+b)) + a + b$$

holds for all positive integers a, b.

¹⁴https://artofproblemsolving.com/community/c6h2800059p24662655

 $^{^{15} \}mathtt{https://artofproblemsolving.com/community/c6h2318789p18486884}$

 $^{^{16} \}mathtt{https://artofproblemsolving.com/community/c6h2772397p24313301}$

¹⁷https://artofproblemsolving.com/community/c6h2251630p17350753
¹⁸https://artofproblemsolving.com/community/c6h2651731p22956810

27. (Japan MO 2020) Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that there exists a positive constant c satisfying

$$\gcd(f(m) + n, f(n) + m) > c(m + n)$$

for all positive integers m, n.

$$f(m+n) \mid f(m)f(n) - 1.$$

Show that for all sufficiently large positive integers n, f(n) = 1.

- 29. (KoMaL A.825²⁰ modified) Find all functions $f: \mathbb{Z}^+ \to \mathbb{R}^+$ such that for any positive integer m, n, f(mn) = f(m)f(n) and $\lim_{n \to \infty} \frac{f(n+1)}{f(n)} = 1$.
- 30. (ISL 2022) Let \mathbb{R} be the set of real numbers. We denote by \mathcal{F} the set of all functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(x + f(y)) = f(x) + f(y)$$

for every $x, y \in \mathbb{R}$ Find all rational numbers q such that for every function $f \in \mathcal{F}$, there exists some $z \in \mathbb{R}$ satisfying f(z) = qz.

31. (ISL 2015) Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$. For any $m, n \in \mathbb{Z}_{>0}$ we write $f^n(m) = \underbrace{f(f(\dots f(m)\dots))}_n$. Suppose that f has the following

two properties:

- (a) if $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^n(m)-m}{n} \in \mathbb{Z}_{>0}$;
- (b) The set $\mathbb{Z}_{>0} \setminus \{f(n) \mid n \in \mathbb{Z}_{>0}\}$ is finite.

Prove that the sequence f(1) - 1, f(2) - 2, f(3) - 3, ... is periodic.

32. (GAMO 2022²¹) Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that for any positive integers x, y,

$$f^{f(x)+y}(y) = f(x+y) + y.$$

- 33. (APMO 2021) Determine all Functions $f: \mathbb{Z} \to \mathbb{Z}$ such that f(f(a) b) + bf(2a) is a perfect square for all integers a and b.
- 34. (ISL 2020) Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ satisfying

$$f^{a^2+b^2}(a+b) = af(a) + bf(b)$$

for all integers a and b.

35. (Israel TST 2023) Find all functions $f: \mathbb{Z} \to \mathbb{Z}_{>0}$ for which

$$f(x + f(y))^2 + f(y + f(x))^2 = f(f(x) + f(y))^2 + 1$$

holds for any $x, y \in \mathbb{Z}$.

 $^{^{19} \}mathtt{https://artofproblemsolving.com/community/c6h3059765p27587392}$

 $^{^{20} \}rm https://artof problems olving.com/community/c6h2842657p25183546$

²¹https://artofproblemsolving.com/community/c6h2845189p25210898

36. (China MO 2021) Find $f: \mathbb{N} \to \mathbb{N}$, such that for any $x, y \in \mathbb{Z}_+$,

$$f(f(x) + y) \mid x + f(y).$$

37. (USATSTST 2022) Let \mathbb{N} denote the set of positive integers. Find all functions $f \colon \mathbb{N} \to \mathbb{Z}$ such that

$$\left| \frac{f(mn)}{n} \right| = f(m)$$

for all positive integers m, n.

38. (EMC 2020) Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$xf(x+y) + f(xf(y) + 1) = f(xf(x))$$

for all $x, y \in \mathbb{R}^+$.

39. (IMOC 2022²²) Let the set of all bijective functions taking positive integers to positive integers be \mathcal{B} . Find all functions $\mathbf{F}: \mathcal{B} \to \mathbb{R}$ such that

$$(\mathbf{F}(p) + \mathbf{F}(q))^{2} = \mathbf{F}(p \circ p) + \mathbf{F}(p \circ q) + \mathbf{F}(q \circ p) + \mathbf{F}(q \circ q)$$

for all $p, q \in \mathcal{B}$.

- 40. (RMM 2012) Each positive integer is coloured red or blue. A function f from the set of positive integers to itself has the following two properties:
 - if $x \leq y$, then $f(x) \leq f(y)$; and
 - if x, y and z are (not necessarily distinct) positive integers of the same colour and x+y=z, then f(x)+f(y)=f(z).

Prove that there exists a positive number a such that $f(x) \leq ax$ for all positive integers x.

41. (IMO 2017) Determine all functions $f: \mathbb{R} \to \mathbb{R}$ such that, for any real numbers x and y,

$$f(f(x)f(y)) + f(x+y) = f(xy).$$

42. (IMOC 2022²³) Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$f(x+y)f(f(x)) = f(1+yf(x))$$

for all $x, y \in \mathbb{R}^+$.

- 43. (Macedonia TST 2022²⁴) We consider all functions $f: \mathbb{N} \to \mathbb{N}$ such that f(f(n) + n) = n and $f(a+b-1) \leq f(a) + f(b)$ for all positive integers a, b, n. Prove that there are at most two values for f(2022).
- 44. (Korea Winter Program 2019²⁵) Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that if a, b, c are the length sides of a triangle, and r is the radius of its incircle, then f(a), f(b), f(c) also form a triangle where its radius of the incircle is f(r).

 $^{^{22} \}mathtt{https://artofproblemsolving.com/community/c6h2918274p26069694}$

²³https://artofproblemsolving.com/community/c6h2918270p26069674

²⁴https://artofproblemsolving.com/community/c6h2849151p25254155

 $^{^{25} \}mathtt{https://artofproblemsolving.com/community/c6h1766848p11573447}$

45. (IRN-SGP-TWN 2023²⁶) Find all $f: \mathbb{Z}[x] \to \mathbb{Z}[x]$ such that for any integer polynomials P, Q and integer r we have

$$P(r) \mid Q(r) \iff f_P(r) \mid f_Q(r).$$

(We define a|b if and only if b=za for some integer z. In particular, 0|0.)

Remark: Take note this is not division in the polynomial sense. f_P is shortform for f(P), because f(P)(r) just dosen't look right.

46. (SEIF 2022²⁷) Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that for any $m, n \in \mathbb{N}$,

$$f^{f(m)}(n) \mid m+n+1.$$

47. (ISL 2015) For every positive integer n with prime factorization $n = \prod_{i=1}^k p_i^{\alpha_i}$, define

$$\mho(n) = \sum_{i: p_i > 10^{100}} \alpha_i.$$

That is, $\mathfrak{V}(n)$ is the number of prime factors of n greater than 10^{100} , counted with multiplicity.

Find all strictly increasing functions $f: \mathbb{Z} \to \mathbb{Z}$ such that

$$\mho(f(a) - f(b)) \le \mho(a - b)$$
 for all integers a and b with $a > b$.

48. (USATST 2014) Find all functions $f: \mathbb{N} \to \mathbb{Z}$ such that for any positive integers m, n,

$$(m-n)(f(m)-f(n))$$

is always the square of an integer.

49. (USAMO 2022) Let $\mathbb{R}_{>0}$ be the set of all positive real numbers. Find all functions $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ such that for all $x, y \in \mathbb{R}_{>0}$ we have

$$f(x) = f(f(f(x)) + y) + f(xf(y))f(x + y).$$

50. (GIMO 2021²⁸) Determine all functions f mapping positive reals to positive reals such that

$$f(x)f(x+2f(y)) = xf(x+y) + f(x)f(y)$$

for all positive reals x, y.

 $^{^{26} \}mathtt{https://artofproblemsolving.com/community/c6h3112293p28153628}$

²⁷https://artofproblemsolving.com/community/c6h2800033p24662520

 $^{^{28} \}mathtt{https://artofproblemsolving.com/community/c6h2595544p22384013}$

3 Bonus

(ELMO 2019 P6) Carl chooses a functional expression* E which is a finite nonempty string formed from a set x_1, x_2, \ldots of variables and applications of a function f, together with addition, subtraction, multiplication (but not division), and fixed real constants. He then considers the equation E = 0, and lets E denote the set of functions E which is a finite nonempty string formed from a set E denote the set of functions E which is a finite nonempty string formed from a set E denote the set of functions E and E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string formed from a set E which is a finite nonempty string from a set E which is a finite nonempty string from a set E which is a finite nonempty string from a set E which is a finite nonempty string from a set E which is a finite nonempty string from a set E which is a finite nonempty string from a set E which is a finite nonempty string from a set E which is a finite nonempty string from a set E which is a finite nonempty string from a set E which is a set E

$$f(2f(x_1) + x_2) - 2f(x_1) - x_2 = 0,$$

then S consists of one function, the identity function.

- (a) Let X denote the set of functions with domain $\mathbb R$ and image exactly $\mathbb Z$. Show that Carl can choose his functional equation such that S is nonempty but $S\subseteq X$.
- (b) Can Carl choose his functional equation such that |S| = 1 and $S \subseteq X$?

^{*}These can be defined formally in the following way: the set of functional expressions is the minimal one (by inclusion) such that (i) any fixed real constant is a functional expression, (ii) for any positive integer i, the variable x_i is a functional expression, and (iii) if V and W are functional expressions, then so are f(V), V + W, V - W, and $V \cdot W$.